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We analyze the analytical and numerical properties of the hitherto known formulas of the 
Fourier transform of a two-center product of exponentially declining functions (exponential- 
type functions, ETFs) which are derived with the help of the Fourier convolution theorem and 
Feynman’s identity. In detail, we consider B functions which are a special class of ETFs hav- 
ing advantageous properties under Fourier transformation. Other ETFs (orbitals) can be 
expressed in terms of B functions by linear combinations. In our derivations we use the 
properties of the differential operator g?(V) specifying a solid harmonic whose ~argument is 
the nabla operator a/& instead of the vector r in order to generate multicenter integrals over 
nonscalar functions from integrals over scalar functions. Applying the generating differential 
operator ST(V) we obtain a recently derived new formula for the Fourier transform of a two- 
center product of B functions in a much more straightforward manner. Furthermore, we 
present an efficient procedure to compute this new formula which is valid for arbitrary quan- 
tum numbers and exponential parameters and report various numerical test values. 0 1985 

Academic Press, Inc. 

I. INTRODUCTION 

A matrix element which has the form of a Fourier transform of a product of two 
basis functions separated by a distance vector R plays an important role in various 
quantum-mechanical approximations. Integrals of this type occur in the theory of 
electron and x-ray scattering from molecules in the first Born approximation. For 
example, the coherent and incoherent intensities for scattered x-rays and electrons 
depend on integrals of the type [l-3] 

I= 1 dr @f(r) cik.W2(r - R), 

if the many-electron wave function for the molecule is taken as an antisymmetric 
product of one-electron functions. Q1 and Q2 are centered at two different nuclei, 
separated by R. Depending on the choice of R, @i and @, can be centered at the 
various nuclei of the molecule. The integral (1.1) also plays an important role in the 
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theory of molecular multicenter integrals which occur inevitably in calculations of 
the electronic structure of molecules using the LCAO-MO method. It forms the 
basic building block of multicenter electron repulsion integrals if one evaluates 
these matrix elements with the help of the Fourier transformation method [4, 51. 
The evaluation of the three-center nuclear attraction integrals can be treated in a 
similar way using the Fourier convolution theorem [S]. The two-center overlap 
integral follows as a special case of the Fourier transform of a two-center product 
with zero transformation vector k. 

Several expressions have been given in the literature for the Fourier transform of 
a two-center charge distribution in the most common bases, i.e., exponential-type 
orbitals (ETOs), usually Slater-type orbitals (STOs), and Gaussian-type orbitals 
(GTOs). For ETOs, surely the more difficult case, there exist two main methods to 
evaluate the two-center integral (1.1): (i) the application of special coordinate 
systems and (ii) the application of the Fourier convolution theorem in connection 
with the so-called Feynman identity [6]. Bentley and Stuart [7] employed the 
prolate spheroidal coordinate system [8] and expanded the plane-wave factor 
e - ik. r in terms of spheroidal wavefunctions. They obtained an analytical expression 
which holds for Slater-type orbitals with arbitrary quantum numbers and exponen- 
tial (scaling) parameters. However, their expression contains five inlinite sums and 
requires a number of recursion relations for the evaluation of various integrals and 
coefficients. Therefore, it is not clear how useful this method is with regard to rapid 
convergence of the summations and stability of the recursion relations. Another 
general expression for the integral (1.1) with STOs as basis functions @i and @, 
was derived recently by Junker [9, lo] using elliptical coordinates. Junker’s 
expression (involving a l-dimensional semi-infinite integration) is a generalization 
of McCarroll’s approach [ 111 to non-spherical orbitals. It depends upon the orien- 
tation of the coordinate system and is not suited for a partial-wave decomposition, 
a fact which is important for an application of the Fourier transforms of a two-cen- 
ter charge distribution in the evaluation of one- and two-electron multicenter 
integrals [S]. For s-type orbitals Bonham et al. [4, 121 derived an expression 
involving a l-dimensional finite integration which does not depend on the orien- 
tation of the coordinate axes in space using the Fourier convolution theorem in 
connection with the Feynman identity. Monkhorst and Harris [13] developed a 
computational scheme for the accurate calculation of this expression. Later, on the 
basis of the formula of Bonham et al., Guidotti et al. [14] derived expressions 
which are applicable to states of higher angular momentum. They gave one special 
formula for each combination of two STOs. Their formulas are obtained by dif- 
ferentiation with respect to the Cartesian components of the transformation vector 
k. Their derivation is based upon a special coordinate system, whose z axis coin- 
cides with the vector R. Recently Trivedi and Steinborn [S] derived a single general 
expression along the lines of Bonham et al., for another basis set of ETOs, the so- 
called B functions [ 151, which is capable of angular momentum decomposition and 
is independent of the orientation of the coordinate axes. B functions can be 
expressed aslinear combinations of STOs [ 161. Therefore, Trivedi and Steinborn’s 
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result is a generalization of the formulas discussed so far. Although B functions 
have a much more complicated analytical structure than STOs they seem to have 
much more appealing properties than STOs in multicenter problems. B f~nctiQ~s 
have extremely compact convolution integrals [ 15, 171 as well as Coulomb 
integrals [ 151. These advantageous properties can all be explained in terms of their 
simple Fourier transform [ 18 1. 

In this article we give a new and simpler derivation of Trivedi and Steinborn’s 
formula for the Fourier transform of a two-center product of B functions. For this 
purpose, we use a differentiation technique which is able to generate multicenter 
integrals over nonscalar B functions from integrals over scalar B functions. ith 
this method analytical results for nonscalar functions with arbitrary integer quan- 
tum numbers can be derived much more easily. Furthermore, we present an efficient 
numerical method to calculate the Fourier transform of a two-center charge dis- 
tribution described by the product of two B functions and report various numerical 
test values. Because of the fact that Slater-type orbitals are given by a. linear com- 
bination of B functions, these results facilitate the applicability of the Fourier trans- 
form of a two-center charge density substantially. 

II. DEFINITIONS AND BASIC FORMULAS 

The ETOs used in this article are the B functions of Filter and Steinborn which 
are defined as follows [ 151: 

B$(a, r)= [2”+‘(n+E)!] -%‘4/;“(ar) /&&Y) (2la) 

rl E z, -1Gn-c co. (2.lb) 

Here, g?(r) stands for the regular solid harmonic 

cq(r) = r’Y;“(8, $4). (2.2) 

The spherical harmonics Y;“(8,4) are defined with the use of the phase conventions 
of Condon and Shortley [19], i.e., they are given by the expression [20] 

Y;“( 8, $4) = i” + ‘m’ 
I 

v+ 1x1- IA)! l’* pycos 0) $m& 
4x(1+ lnzl)! 1 I 

Here, Pj”‘(cos 0) is an associated Legendre polynomial [21] 

d’+“’ (x2 - 1)’ 
CYX) = (1 -x2) dx’+” 2’E! . 

The radial part of the B function is described by a reduced Bessel function (RBF) 
[22,23] which is defined by 

E,(z) = (2/n:)“2Z’K,(Z), WV 
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where K,,(z) is the modified Bessel function of the second kind [24]. The RBFs 
satisfy the following three-term recurrence relation [25]: 

&+,(z)=2v&,(z)+221t~,(z) (2.6) 

As the RBFs are the dominant solution of this difference equation, the recurrence 
formula (2.6) may safely be used in the upward direction. In the case of half-integral 
orders, v = II + 4, n E N,, the RBFs can be represented by an exponential multiplied 
by a terminating confluent hypergeometric function ,F1 [26]: 

f n+l,2(Z)=2”(1/2),e-‘,F,(-n; -2n;2z) (2.7) 

Here, (a), stands for the Pochhammer symbol [27] which may be defined in terms 
of the gamma function T(z) according to 

(a),=r(a+n)/r(a)=a.(a+l)...(a+n-l), (a)o = 1. (2.8) 

The normalized STOs are written as 

with 

x;&c(, r) = N(n, c4) e-a’(ar)“-‘Y;“(e, qs) (2.9a) 

N(n, .)=a-n+1[(2a)2”+‘/(2n)!]“2, (2.9b) 

a > 0 and integer n, 1, and m. 
In the following text we shall use the symmetric version of the Fourier transfor- 

mation, i.e., a given absolutely integrable function f E L1( lw3) and its Fourier trans- 
form f(p) E L1(Iw3) are connected by the relationships [28]: 

f(p)=(2x)-“*[exp(-ip.r)f(r)dr, (2.10) 

f(r) = (27~) -3’2 [ exp(ir . p) f(p) dp. (2.11) 

The two-centric convolution integral of two functions J; g E L’( lw3) can be transfor- 
med into the one-centric Fourier integral [29]: 

j d.f(R - r) g(r) = j dp eiR. pf(~) i3~h (2.12) 

where f and g are the Fourier transforms off and g according to Eq. (2.10). The 
integral transformation Eq. (2.12) is called the Fourier convolution theorem and is 
closely related to the following integral transformation for the overlap integral off 
and g: 

j &f*(r) g(r - R) = 1 dp e-iR.pf*(p) g(p). (2.13) 
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For the integral of three spherical harmonics, the so-called Gaunt coefficient [30], 
we write 

The double factorial function is defined by 

(2n)!!=2x4x . ‘. x (2n) = 2”n!, (2.15) 

(2n-l)!!=lx3x ... x(2n+1)=(1/2),2”, (2.16) 

O!! = l!! = 1. (2.17) 

We want to mention that an ST0 can be expressed by B functions according to the 
following formula [ 3 1 ] 

xz+ r) = J-Y% El 
n-1 (-l)“-‘-qn-1)!2’f”(I+p)! B” (~ r) 
1 p=minp (2p-n+1)!(2n-21-2p)!! pJ ’ ’ (2.18) 

min p = (n - 1)/2, for n - 1 even, 
(2.19) 

=(n-Z+1)/2, for n - 1 odd. 

The complex conjugate of f: R3 -+ @ is denoted by f*. In the special case of 
spherical harmonics, we also use the notation 

y;“*e4 9) = [I YYYR 411** 

In Condon-Shortley’s phase convention, it is 

Y;“*(e,@)=(-1)“Yrm(t9,d). 

(2.20) 

(2.21) 

III. THE FOUUER TRANSFORM OF 
A TWO-CENTER PRODUCT OF B FUNCTIONS 

We consider the integral representing the Fourier transform of a product of two 
B functions with centers separated by a distance R: 

s n,;$;(c(, /I, R, k) = j dr e --” Ir B$,(a, r) B~#?, r -R). (3.1) 

It should be noted that in the case k = 0 the Fourier integral (3.1) simplifies to the 
overlap integral of two B functions which is usually written as S”,$$;(CX, ,Q, 
[ 16, 251. 

One of the most important methods for the evaluation of two-center integrals, 
such as the two-center Fourier integral (3.1), has been the application of the 
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Fourier convolution theorem. The usefulness of this theorem for the evaluation of 
two-center integrals in quantum mechanics was first noticed by Prosser and 
Blanchard [32]. The convolution theorem itself can be found much earlier in the 
mathematical literature in a book by Bochner [33]. Let f and g be two absolutely 
integrable functions of L’(R3). Then, the Fourier transform of the two-center 
product f*(r) g(r -R) can be represented with the help of the integral transfor- 
mation, Eq. (2.13), in the following way: 

s dre-ik~‘f*(r)g(r-R)=~dpe-‘(k+p)~Rf*(p)~(p+k) (3.2) 

Here, f and g are the Fourier transforms off and g as defined in Eq. (2.10). For 
k = 0 we obtain Eq. (2.13) from Eq. (3.2). Obviously, the difficulty of evaluating the 
momentum space integral in Eq. (3.2) depends crucially upon the functional form of 
the Fourier transform of the functions involved. For B functions the Fourier trans- 
form has the following simple analytic structure [ 181: 

C12n+l--1 

~~r(% p)= (2/71V2 [a2+P2,n+f+l +Y-iP). (3.3) 

In momentum space B functions may be considered as kind of basic ETOs. In fact, 
the Fourier transform of other ETOs like STOs or /1 functions [34] may be 
expressed as linear combinations of Fourier transforms of B functions [35]. For 
n 3 1 we have B;,(a, r) E L’(R3), and we obtain with the help of Eqs. (3.2) and (3.3): 

S$$$x, fl, R, k) = (2/n) a2n’+[1--lp2n2+12-1 

dp’l?@(-ip)C?J~[-i(p+k)]e-“P+k)~R 
[a*+p2]“‘+h+1[~~+(p+k)2]n2+~2+1’ 

(3.4) 

The regular solid harmonic gu;l(r) is a homogeneous polynomial of degree I in the 
Cartesian components x, y, and z of r [36]. We can replace these components of r 
by the corresponding Cartesian components of the gradient V--d/ax, d/ay, and 
a/&-to obtain the operator g’;“(V). Application of this operator to a plane wave 
yields [ 371 

CiYy;“(V,) e”’ p = SYy(ip) e”“ p, (3.5) 

If we apply Eq. (3.5) twice under the integral sign of the momentum integral in 
Eq. (3.4) we can take the differential operators in front of the integral sign and 
obtain 

~~:~~;C~, B, R k) 

=(2/71)~ P 2n1+/1-1 2nz+lz-1 e-ik-R (-1)” 

xg$ Pd eik’R I? I,, +I, + L~~+I~+ ,(a, P, k, RI, (3.6a) 



TWO-CENTER FOURIER TRANSFORM 201 

where 

Ljz(a, A k RI = 1 dp 
e-‘(p+k).6t 

[a2 + p2]“[p2 + (p + k)‘]” (3.6b) 

with 

and 

j1=n,+1,+1 (3.7a) 

j, = n2 + I, + 1. (3.7b) 

For the evaluation of integral (3.6b) we use the following relationship [38]: 

1 YE 
s ’ dt 

(jl+j2-1)!(1-t)jl-ltj?-l 
&J2 o (j, - l)!(j,- l)![bt+ (1 -~~)u]jl+j~’ 

which is a generalization of the so-called Feynman’s identity 

1 -= ldt 
s 

1 
ab o [bt + (1 - t)a]” 

(3.8) 

(3.9) 

and can be obtained easily from this identity by repeated differentiation with 
respect to a and b. Applying Eq. (3.8) to the integrand of Iji,j,(a, fi, k, R), followed 
by a change of variables p -+ p - tk, we obtain by setting a = p2 + a’, 
b = (p + k)2 + /3* and by interchanging the order of integrations, 

Ijl.jz(a, P, k, R) = 
(j,+j,-l)! 1 

(II _ l)!(j,- l)! s dt(1 - t)Ji--tJ2--1,-z(1-r,k.R o 

(3.10a) 

where 

[y(t)]’ = k2t( 1 - t) + a2( 1 - t) + f12t. 

From Eqs. (3.3) and (2.10) we see that, apart from an unimportant factor, the 
integral in Eq. (3.10a) is simply the representation of a scalar B function in terms of 
a Fourier integral. Therefore, we have 

Ijl,j2(a, /I, k, R) = 4~‘~~ (jl +j2- 1Y 
(j, - I)!(&- l)! x s l dt (1 -tP1tj2-’ e-i(l-f)k.*Bq o [Y(t)]2(il+h)-3 Ji+JZ- l,oCW> RI. (3.11) 
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According to our experience it seems that there is no closed-form analytical 
expression for the remaining t integral in Eq. (3.11) containing only a finite number 
of terms. But we can get an analytic expression by expanding the integrand of the t 
integral in a Taylor series, followed by term-by-term integration. For instance, we 
can expand the B function Bi + jz- 1,o y [ (t), R] in a Taylor series using the mul- 
tiplication theorem of B functions [lS]: 

B;,(l, r) = (j1/~3)~~+‘-’ C m (n+l+l), p’i PBrn 
P! [ 1 li2 n+p,l(d, r). (3.12) 

p=o 

Here, the infinite series converges only if 11 - i1’/d21 < 1 holds. If we choose 
3L2=y2(t) and h2 = y’(t), we obtain 

(3.13) 

for all 0 < t < 1 (a, /I > 0). Thus, the infinite series in Eq. (3.12) converges uniformly 
on the integration interval [0, 11, i.e., we can interchange integration and sum- 
mation. The resulting infinite series representation of the two-center Fourier trans- 
form of B functions which is rather complicated, is derived in Appendix B. A similar 
approach for Is Slater-type orbitals only has already been studied by Monkhorst 
and Harris [13]. They inserted the Lommel expansion for the spherical modified 
Bessel functions [39], 

k,[z(s2 - t2y21 
(S2 - ty 

= f w2mm kn+.(z.S) 

m=O s 
M+?l m! ’ 

k(z) = w4”“K + 1/2(Z)> 

(3.14a) 

(3.14b) 

into the integrand of an integral similar to Zj,,Ja, p, k, R). But Lommel’s series 
expansion of the spherical modified Bessel functions is equivalent to the mul- 
tiplication theorem of RBFs [40] 

fi”,rz(4 /QnZ)=n2v f [l -a21yp 
n=O 

(3.15) 

as can be seen immediately by the substitutions t2 = 1 - A2 and s = 1 and a few sim- 
ple series manipulations. From Eq. (3.15) the multiplication theorem of B functions, 
Eq. (3.12), can be derived quite easily. The rate of convergence of the infinite series 
in Eq. (3.12) is determined by the factor 

1 - A*/@, (3.16) 

i.e., the infinite series converges more rapidly if the convergence factor (3.16) 



TWO-CENTER FOURIER TRANSFORM 203 

approaches zero, or equivalently, if ;1 approaches 6. Now we insert the represen- 
tation of integral Ij,,j2(~, p, R, k), Eq. (3.11), in Eq. (3.6a) and obtain 

s i$$i;(~> P, R k) 
= (- 1)“(47T) 3/2a2n~ + 11~ 1 

P 
2~12 + 12 - 1 

$I,+n,+Z,+l,+l)! 
@, + z,)!(n2 + z2)! epik.R g;I”(vR) eik.R q$“(vR) 

x 'dt I 
t"*+'Z(l--t)"'+" e-'('-')k.RBo 

0 [Y(t)1 2(n1 + n2 + Ii + 12) + 1 n,+n2+1,+,~+,,oC~(t), RI. (3.17) 

We still have to apply the differential operator Yr;(V,) e’k‘Rgy(VR) to the 
product function e - ‘(I - ‘jk. "Bz, + “2 + II + I2 + ,,,[y (t ), R] consisting of a plane-wave 
and a scalar B function. The differentiation can be performed quite easily using 
some special differentiation properties of the solid harmonic and the B functions in 
connection with the Fourier transformation method. This is shown explicitly in 
Appendix A. We eventually arrive at the remarkable expression for the Fourier 
transform of the two-center charge distribution B$,(cc, r) Bz',z(P, r - R) derived by 
Trivedi and Steinborn [41] 

= (4n)3(2z, + I)!! (21, + I)!! (nl +n2 + I1 +z2+ ‘)’ 
(n, + Z,)!(n, + Z,)! 

XC12n,+I,-1 Zn*+lpl 
P lit 

(Zlml/ Z;rn; IZ,-Z;m,-m;) 
I;=om; (21; + 1)!![2(z,-z;)+ l]!! 

x [g ;‘;;;&)I* 

8 I,=0 m* (21; + 1)!![2(Z, - 1;) + l]!! 
9’~M,~$k) 

r; + I;. 
XC (2)(lzm;I Z;rn; IZm;-m;)l ~II+I2+l;+I;(_f)l,+l*+I; 

I= Lnm 
t"Z+'2+'l-I;(l ~t)"'+',+/2-/; 

Cli(t)l Z(nl+nz+ll+l*)-(i;+I;)+l 

B5$.2~io+ 1 +,EW, Rll 
I 

2 (3.18a) 

(3.18b) 

where 

AZ=(2;+&-Z)/2 
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AZ, = (I, + 1, - 1)/2. (3.18c) 

The symbol CC*) indicates that the summation is to be performed in steps of two. 
The summation limits of rn; , m;, and lmin follow directly from the selection rules for 
the Gaunt coefficients [42]. Another consequence of these selection rules is that 
(I; + I; - 1)/2 is always a positive integer or zero. 

Monkhorst and Harris [13] have replaced their t-integral for Is-Slater-type 
functions by a sum of integrals over subintervals Ii= [Us, ui- i] and expanded the 
spherical modified Bessel functions belonging to Ii in Taylor series around the 
points tii = (ui + ui- ,)/2 using Lommel’s series expansion with the intention of 
accelerating the convergence of the infinite series by decreasing the convergence fac- 
tor for each subinterval. Guidotti et al. noted that the numerical procedure of 
Monkhorst and Harris does not prove to be practically convenient for STOs of 
higher principal and angular momentum quantum numbers, since the convergence 
of the Taylor series around the points Ui slows down. In the next section we shall 
show that it is computationally more efficient to use an automatic and adaptive 
integration procedure for the evaluation of the remaining t-integration instead of 
series expansions where the computational problems due to the slow convergence 
seem to be insurmountable. 

IV. AN EFFICIENT METHOD FOR THE NUMERICAL EVALUATION 
OF THE TWO-CENTER FOURIER TRANSFORM OF B FUNCTIONS 

First we rewrite the formula for the two-center Fourier transform of B functions, 
Eqs. (3.18at(3.18c), in a way which is advantageous for computational purposes. 
In Eq. (3.18a), there occur Gaunt coefficients of the special form 

(lm( llm’]l-I’m-m’). (4.1) 

These Gaunt coefficients can be expressed in closed form. This fact becomes 
obvious if the representation of Gaunt coefficients in terms in 3jm symbols is con- 
sidered [ 43 ] : 

(Im, llrnl ,[-~,m-mm’)=(-l)m 
L 

(21+1)(21+~~[2(Z-~)+11] w 

x(,,, ; ;)(;I;, ;, g. (4.2) 

These special 3jm symbols can be expressed by relatively simple closed form 
expressions containing only factorials [44]: 
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(4.3) 

q-l),+ I 
(2Z-21’)!(21’)!(Z+m)!(Z-m)! 

(2Z+l)!(Z-I’+m-m’)!(Z-I’-m+m’)! 

1 1 
l/2 

’ (/I+m’)!(Z’-m’)! ’ (4.4) 

If we insert these expressions into Eq. (4.2), we obtain 

(iml I”m’/I--l’m-m’)= 
(2Z’+ l)!! [2(1-I’) + l]!! 

(2Z+ l)!! 

(21-t l)(Z + m)!(Z - m)! 
’ 4rc(211+1)[2(1-1’) + l](Z-Z’+m-m’)!(Z-I’-m + m’)!(Z’+m’)!(l’-m’)! 

(45) 

The first two Gaunt coefficients in Eq. (3.18a) are replaced by the expression on the 
r.h.s. of Eq. (4.5). In Eq. (3.18a) we introduce the new integration variable s = 1 - t 
and rearrange the order of the rn; and 1’* summations. This yields the following 
expression which is quite convenient for computational purposes: 

where 

II k’l-‘$1 _S)1~2+1z+I~-I;[y(s)]I; 
g(s)= c (LO l-(21; + 1)(2Z, -21; + l)]“’ 

12 k”-‘;s”‘+“+“-‘;[y(s)]‘; II + I2 + l;ii’ + 12 + I; + 1s 

miii(l;,ml + I1 ~ I;) 
X c 

m; = max( -/;,m, - ii + I;) 

(4.6a) 
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x [(Ii-m;)! (z;+m;)! (zl-z;-ml+m;)! (zI-z;+m,-m;)!]“2 

min(/&m2 + 12 - I;) 
X c 

m; = max( - /;,m2 - 12 + I;, 

cI;M; (k/k) 

x [(I;-mi)!(l;+mi)! (&-I;- m,+m;)! (Z2- I;+m, -m;)!]“2 
1; + /; 

XC ‘2’(l;m;I Z; rn; IZm;-m;)[Ry(s)]’ Y+-“;(R/R) 
/=I& 

(4.6b) 

AJ (AZ-j+ 1)j 
XC j! 

(-2)i(n,+n,+Z,+Z2-j+2)j 
j=O 

c=(4rc)2 
a2nl+llp1 2n2+12-1 P 

(n, +Z,)!(n,+Z,)! 2nl+n2+11+12+’ 

X CPZ1 + 1X21, + l)(Z1 -ml)! (II +m,)! (I,-m,)! (I, +m2)!]“2, (4.6~) 

and 

y*(s) = k2s( 1 -s) + E*S + (1 -s) p”. (4.6d) 

In order to obtain a reliable and economical procedure for the numerical 
integration of the l-dimensional integral (4.6a) we have to examine the integrand. It 
is particularly important to find out whether singularities occur and if they do, 
where, and in which region the contribution to the value of the integral is negligible. 
The function g(s), which occurs in the integrand and which consists of six partly 
nested finite sums is well behaved and vanishes at the endpoints of the integration 
interval [0, 11. For larger values of AZ= (I; + Z; - Z)/2, the inner j sum of the 
function g(s) will lead inevitably to a loss of some significant digits as has been 
noted by Trivedi and Steinborn [S]. Fortunately, extremely large values of AZ do 
not occur and for all practical applications, the evaluation of g(s) should yield a 
satisfactory accuracy. The behavior of the integrand is dominated by the following 
parts: 

and 

(4.7) 

4s) = 1/CY(~)l 
2(n1+ nz + I1 + /2) + 1 (4.8) 

For larger values of k. R the function W(S) oscillates heavily, and for larger k = 1 kl 
the function g(s). h(s) exhibits high peaks in the vicinity of 0 and/or 1, the 
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endpoints of the integration interval. The sharpness of these peaks depends upon 
the magnitude of the quantum numbers n,, ti2, II, I,, and the exponential 
parameters CI, /I as well as on the ratio cc//?. This may be seen easily from Eqs. (4.8) 
and (4.6d). As a result of the special behavior of W(S) and h(s), a direct application 
of one of the standard quadrature rules, such as Gauss-Legendre or Gauss-Jacobi 
formulas, is disadvantageous. These quadrature rules work with fixed abscissae, so 
that the algorithm proceeds in the same way for each integrand and only N, the 
number of abscissae to be used, is chosen with respect to the complexity of the 
integrand. This may lead to an unnecessarily large number of function evaluations 
in order to obtain a certain given accuracy for the integral approximation. This is 
an annoying fact, especially when the integrand contains such a complicated 
function as g(s), the evaluation of which is the most time-consuming step in the 
integration procedure. Therefore it is advisable to replace the integral (4.6a) by a 
sum of integrals over suitable subintervals-depending upon the local behavior of 
W(S) and g(s)-in order to obtain a better integral approximation. This method was 
used by Guidotti et al. [14] using the Gauss formulas to approximate the subinte- 
grals. A disadvantage of this approach is, that, given a certain relative accuracy, 
one has to find experimentally not only the optimal subdivision of the integration 
interval, but also the optimal number of integration points for each subinterval. 
Another shortcoming is the fact that for larger values of k. R the integrand 
f(s) = g(s) h(s) e--isk.R oscillates rapidly, and the application of the Gauss 
quadrature formulas turns out to be inconvenient. Therefore, it is advantageous to 
use an automatic, adaptive integration method which takes into account the 
oscillatory nature of the exponential e -jsk. R. A quadrature routine is automatic if it 
provides an approximation of specified tolerance. It is called adaptive if for 
calculating a sequence of integral approximations the location of the integration 
points of the nth iterate depends on information gathered from iterates l,..., n - 1. 
This is usually achieved by a successive partitioning of the integration interval, in 
such a way that many points are located in the neighborhood of a difficult region of 
the integrand, causing there a high density of quadrature points. Currently, various 
automatic, adaptive integrators for the approximation of the sine transform 

s(o)=3b sin(wx) f(x) dx (4.9) a 

and the cosine transform 

C(w) = lb cos( ox) f(x) dx (4.10) 
n 

are available [4546]. Especially for strongly peaked functions f(x) the algorithm 
AINOS of Piessens and Branders [45] seems to be very efficient for the evaluation 
of integrals with the oscillatory weight functions sin(wx) or cos(ox). After extensive 
numerical experimentation we came to the conclusion that the subroutine 
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D01ANF of the NAG library [47], which is based upon the algorithm AINOS, is 
the most efficient adaptive integrator for the evaluation of the l-dimensional 
integral representation of the two-center Fourier integral over B functions (4.6a). 
D0lANF is a QUADPACK [48] routine and has the following main components: 
Assume that a subinterval has length L = Ia - bl 2-l. If Lo > 4 and Id 20, the 
integration over the subinterval is performed by mean of a modified 25-point 
Clenshaw-Curtis procedure, and the error estimate is computed from this 
approximation together with the result of the 13-point formula. If the above con- 
ditions do not hold, Gaus.s’ 7-point and Kronrod’s 15-point rules [49] are used. 
The application of the Clenshaw-Curtis and Gauss-Kronrod quadrature rules has 
the great advantage that the order of quadrature may be doubled without losing 
function evaluations. Thus error estimates require no additional function 
evaluations. The algorithm, described in [48], incorporates a global interval par- 
titioning strategy (as defined by Malcolm and Simpson [SO]) together with the E 
algorithm [ 5 1 ] to perform extrapolation. 

We have written a computer program based on Eqs. (4.6a)-(4.6d). As mentioned 
above, the evaluation of the complex-valued function g(s) is the most time-consum- 
ing step. Since the integration procedure requires repeated evaluation of the 
integrand function at the various abscissae, we precomputed all s-independent coef- 
ficients of g(s), such as Gaunt coefficients, spherical harmonics, etc., and stored 
them in appropriate arrays in order to save CPU time. As a further element for 
optimizing the integration procedure it is convenient to consider special cases of the 
transformation vector k. If k lies along the z axis of the coordinate system we have 
& = 0 or 180”, respectively, which yields 

Pj”‘(&l)=O (4.11) 

for m#O. Thus Yjml(kjk)=O for m #O, and the inner m;- and m;-sums of g(s) 
vanish. For k = 0 the I;- and &sums of g(s) also vanish and we obtain the l-dimen- 
sional integral representation for the two-center overlap integral over B functions of 
Trivedi and Steinborn [S]. In Eq. (4.6b), where g(s) is defined, there occur 
products of Gaunt coefficients and spherical harmonics, 

(Ifrn; 11; rn; 1 lm; - rn; ) Yp-“; (R/R), (4.12) 

where I is a summation index whose limits are determined by the selection rules of 
the Gaunt coefficient. The computation of these coefficients was performed recur- 
sively in 1 with the help of the subroutines GAUNT and RECYLM of Weniger and 
Steinborn [42]. Considering that G(s) = g(s) h( ) s is a complex-valued function on 
[0, 11, the evaluation of the integral 

(4.13) 

requires the computation of two finite sine transforms of type (4.9) and two finite 
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cosine transforms of type (4.10). In Table I we have summarized some typical test 
values for integral (4.13). ACCREL denotes the required relative accuracy, N the 
number of evaluations of the function G(s), and ABSRE and ABSIM the estimated 
absolute error of the real part and imaginary part of integral (4.13), respectively. 
The various integrals are computed with a relative accuracy of 10 - 3 and 10 - 7 
using single precision which corresponds to approximately 10 decimal digits on our 
machine. A comparison of the integral approximations with the corresponding 
absolute error estimates of Table I shows that the required relative accuracy is 
satisfied in all cases. However, the most integral approximations have a much better 
relative accuracy by far. This can be seen by comparing the values with a required 
relative error of 10 -’ with those of a relative error of 10 -‘. As may be expected, 
the convergence of the integration procedure is slower if the integrand function 
possesses high peaks. This becomes immediately evident if we compare the results 
given in Table I for the integrals $2: with CI = /I = 1.5 and either k = 2.0 or k = 6.0. 
In the case of ACCREL = 10 -’ and k = 2.0, 165 function evaluations are needed 
compared to 3 15 function evaluations for k = 6.0. The relatively slow convergence 
in the case k = 6.0 is due to the fact that for this symmetric overlap distribution 
with large values of n and Z-the exponent q = 2(n1 + ~1~ + I, + Z2) + 1 in the function 
h(s) = l/[y(s)ly is 41-the integrand f(s) is strongly peaked in the vicinity of the 
endpoints of the integration interval [0, l] if k is much larger than c1 and j3. Apart 
from an unimportant numerical factor, a 1s ST0 is equal to B&,. We have explicitly 

x&Jtx, r) = ~cx~/~B~,~(~, r). (4.14) 

Hence, we can compare the first four integral approximations in Table I with those 
in Table 1 of Guidotti et al. [ 141 for the Fourier transform of a two-center product 
of 1s Slater functions. If we multiply our values by 16(a. p)3’2 and take into account 
that Guidotti et al. used the transformation vector -k instead of k, we obtain an 
excellent agreement between our results for the function Blo and the results of 
Guidotti et al. for the Is Slater function xi 0. In the limiting case k = 0 we obtain the 
two-center overlap integral over B functions. Recently these integrals have been 
computed by Weniger and Steinborn [26] close to machine accuracy, which 
corresponds approximately to 24 decimal digits in double precision, by using the 
convolution theorems of B functions. A comparison between the results for the two- 
center overlap integral in Table I and the corresponding results in Table II of 
Weniger and Steinborn [26] provides further support for our claims concerning the 
reliability of the numerical procedure which is presented in this article. 

SUMMARY 

In this article we analyzed the analytical and numerical properties of the Fourier 
transform of a two-center product of B functions. Other exponential-type functions, 
like Slater-type orbitals, can be expanded in terms of B functions. Therefore, these 
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investigations facilitate an application of the Fourier transform of a two-center 
product of exponential-type functions of various different specitic forms as they are 
needed in many quantum-mechanical calculations and interpretations of 
experiments, for instance, in the field of scattering theory [l-3]. We give a new an 
simpler derivation of a known general formula [5] for the Fourier transform of a 
two-center product of B functions. Our method utilizes a differentiation technique 
which makes it possible to generate multicenter integrals over nonscalar B functions 
from integrals over scalar functions. With this method analytical results for non- 
scalar functions can be derived much more easily than it was possible so far, 
exploited the properties of the differential operator Y?(V) which is an irreduc 
spherical tensor of rank 1. It is obtained from the regular solid harmonic Y;/;“(r) 
replacing the Cartesian components of r by the Cartesian components of V,. 
then analyzed the numerical properties of the expression for the Fourier transform 
of a two-center product of B functions which requires a l-dimensional numerical 
quadrature over a finite integration interval. According to our experience the 
application of a special automatic, adaptive quadrature which takes into account 
the peaked nature and oscillatory behavior of the integrand, appears to be the most 
efficient and economical numerical tool for evaluating this integral. We used a 
QUADPACK [45] routine whose main components are: the global interval par- 
titioning strategy of Malcolm and Simpson, the application of a modified 
Clenshaw-Curtis procedure, and the Gauss-Kronrod quadrature rules. Various 
numerical test results are also reported. 

APPENDIX A 

We want to compute the action of the differential operator 

Pj$;(k, V,) = Y$(V,) eik’RYy(VR) (AlI 

upon the product 

f(R)=e- i(l -ilk. RB~,,(~, R). CA21 

IIere, we use the abbreviations y=?(t) (see Eq. (3.10b)) and y1= IZ* +n2+ 
I, + 1, + 1. First we use Eq. (2.11) to represent the scalar B function Bz,o as a Fourier 
integral, 

B:,,(y, R) = (271) - 3’2 I dp eip. RB; &, p). 

Now we insert Eq. (A3) into (A2) and use the relationship (3.5) twice under the 
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integral sign of (A3). The application of the differential operator (Al) onto the 
product (A2) then yields: 

Pt;f(k, V,)f(R) = (27~-~‘*( - 1)” 1 dp g;;[i(p + tk)] 

x CY?[ip - (1 - t)k] e’(P+‘k).RBt,O(y, p) (A4) 

The separation of p and k variables in the solid spherical harmonics occurring in 
the momentum space integral (A4) is accomplished by the addition theorem of the 
solid spherical harmonic [ 521: 

gY;“(rl +r2)=4n(2/+ I)!! f: 1 ‘zm’ llrn’ ‘z-I’m-m’) 
I’=o m, (21’+ 1)!![2(1-I’) + l]!! 

x CYy’(rl) tiY/;F;,“‘(r2). (A5) 

Again applying the differentiation rule (3.5) twice and using Eq. (2.12) we arrive at 

f’::,“:& VA J-(R) 

= (47~)~(21, + l)!! (21, + l)!! (-l)“+‘; 

(Z,m,I I;rn; II,--Z;m,-m;) 

xh 
(Izm2~l;m~~Z2-12m,-m~) 

fzO m; (21; + l)!! [2(1,-I;) + l]!! 
~~-;+i(l--r)k] 

xe ifk “g;‘* (v,) “y@,) B;,o(y, R). w-5) 

The operators Y?‘(V) are irreducible spherical tensors. Therefore they can be 
coupled in exactly the same manner as ordinary solid harmonics, i.e., we have [ 181 

(2)A(i;+‘;--‘)~2(l;m;I z;m; jzm;-m;) g/;““-“;(V) (A7) 

Applying the special differentiation properties of B functions [IS], 

%v7 R+ I,0 (Y, R) = (-y)‘(47r) - “*B$(Y, R) 

and 

Y -2YAYB~h,W= i t-1)’ ; BE:_,,hR), 
t=0 0 

we eventually obtain the final result 

(A81 

(A9) 
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P::;:(k VA f(R) 
= (4r~)~‘~(21, + l)!! (2& + l)!! (- 1)” 

1; + r; 
xe ifk.R 1 '*'(l;m;I I;rn;I Zm;-m;) f (-1)’ 

I = /,i, f=O 

At = (I; + I; - 1)/2. (AlO) 

APPENDIX B 

The starting point for deriving a series representation of the Fourier transform of 
a two-center product of B functions is Eq. (3.11). Expanding the t-dependent scalar 
B function in the integrand of the t integral in Eq. (3.11) in an infinite series with 
the help of the multiplication theorem of B functions, Eq. (3.12) by choosing the 
parameters A = y(t) and 6 = y(4), we obtain 

Zj,,jz(~, IL k RI = 
47P(jl +j, - l)! 

#jl+h--l)--l(jl - l)!(j,- I)! 

x f (jl +h), Bv 
P! 

,, +n+p - LO@, R) 
p=o 

Here, we used the fact that the infinite series expansion converges uniformly in r on 
[0, 1 ] as has been shown by the inequality (3.13) so that we may integrate term-by- 
term. Identifying j, and j, with n, + I, + 1 and IQ + 1, + 1 and inserting Eq. (Bl ) into 
Eq. (3.6a) yields 

X$$:b, A R k) 
8713/2(n, + n2 + lI + l2 + I)! a2n1+b 1p2fk ~,-ik.~ 

= 
S2(r?‘+n*+11+1*)+ ‘(nl + I,)! (n2 + I,)! 

x f (n1+nz+11+12+2)Pg";(v,) eik.Rgm2(v 

P! 11 h R 
1 

p=o 

’ &e-i(l-Ok’R(l _ t)nl+htmfh 
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Before evaluating the t integral in Eq. (B2) we apply the differential operator 
Gus e ik.Rgy(VI() to the product function B~l+,,,+I,+I,+p+ 1,0(6, R) e-‘(l-r)k’R 
Using the result (AlO) we arrive at 

= (47~)~(21, + 1)!!(21, + l)!! 
a2n,+li-l 2nz+Iz-I P 

~2(nl+n2+II+I2)-2 ( - 1)" 

x(n,+n,+z,+z2+2)! ‘f (n,+n,+Z,+Z,+2), 
k.3 + II)! (n2 -I- 12)! p=o P! 

xiIz 
(Z,ml) l;rni )l,-1;m,--m;) 

(LO + (21; + l)!! [2(Z, -I;) + I]!! cgm’-~“~(ik)J* 4 1, 

x i c Cz2m2I I;&2 lz2-E;m2-mi) 
‘;Lom; (2Zi+l)!! [2(1,-&)+1-J!! 

??/?--2( - ik) 

x 6’; + i;p + I2 -  I ; , l ;>m;  

. ,+~, - I ;+p, r ; ,m;@~ 4 R, 0) 

x ; dt e - s 
i(l- t)k. R (1 _ t) n, + II + 12 -  +I’ + 12 + I t  -  1; r ’ ( t )  p 

i 1 

1 

J2 .  

(B3) 

In Eq. (B3) we used the fact that the two-center overlap integral over B functions 
with equal scaling parameters is given by a simple linear combination of B 
functions [ 151: 

=(47r)S-3(-l)‘i C ‘*)(12m;) Z;ml, IZm;-m;) 
I= km 

x 2 (-l)j 
LIZ 

j=O 0 j 
B~~~:,l+b+p-c-j+l,r(B, R)* (B4) 

The remaining t integral in Eq. (B3) can best be evaluated by factorizing 
[l - (y(t)/6)2]p in the following way: 

Integrals such as 

2k2 P 
= 

s 

1 dt eitk.R (I_ t)nl+Il+h--(iZt"2+12+11--1;(1 -2t)P I_ 

0 k2 + 2(a2 + fi2) t 1 

036) 
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occur in statistics in connection with the generalized beta distribution and may be 
calculated in terms of the confluent hypergeometric function @g) with three 
variables. We have [53] 

I@,, l,>1;, n2,4,L p, a, P, k, R) 
(n, + 1, + 12 -I;)! (n* -t- I, + z1- I’,)! 

=(n,+n,+I,+z,+I,-I;+z,-I;+l)! 

x @$)(n, + 1, + 1, - 1; + 1, -p, -p; n, f n2 + I, + I, + I, - E; + I, - 1; i- 2; 

2, 
2k2 

k2 + 2(c? - /12)’ 

where @g) is defined by 

It should be noted that two of the three infinite sums in the confluent 
hypergeometric function (B7) terminate because of the negative argument of two 
Pochhammer symbols. Inserting Eq. (B7) in (B3) yields the final result: 

s $$;(a, D, R k) 
a2n,+l,-1 2n2+12-1 

P 
= (4+(21, + w  (2L+ I)!! 82~nl+n2+,l+12~-2 e- ik. “( _ 1 )‘I 

(‘lmlI1;m~I’l-z~ml-m~) [~~~~:m;(k)]*(n,+I,+l),,_II 
r;=om; (21; + l)!! [2(1,-&)-t l)!! 

X(nl+n,+z,+z,+2),,-i;+c;-i; 

x .f (n,+n,+Z,+I,+2), k2+2(ct2-flP2) 
I 

p 

p=o P! k2 + 2(a2 + fi2) 

x @l-Y n2 + 1, + 1, -I; + 1, -p, -p; n, + n2 + 1, + I, + I, - 1; 

i- I, - 1; + 2; 2, 
2k2 

k2 + 2( a2 - fi*)’ 
ik . R 

x p + 12 - i;.1;,m; 
nl+ll-~i;+p,l;,m;(~’ 6, R, 0). 
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Numerical test calculations have shown that the infinite series (B3) converges 
extremely slowly if k and the difference between CI and p become larger. This 
becomes immediately evident if the convergence factor 

k242(a2-f12) * 
k2 + 2(a2 + /I’) 1 0310) 

in Eq. (B9) is considered. A further delicate procedure in the evaluation of the 
infinite series representation of the Fourier transform of a two-center product of B 
functions is the computation of the hypergeometric function @g) with imaginary 
argument ik. R which is not only time-consuming but also quite susceptible to 
rounding errors. 
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